

Maximizing ROI for Automated Weld Inspection

Welcome

Advanced Fume Workshop: Breaking Down Fume Torches

Panelist

Jeff Henderson, Key Accounts Manager Robotic Systems

Jason Jamiel, Key Accounts Manager Automotive

3D Weld Inspection Introduction

Justifying Return on Investment

Reduce Inspection Costs

- # of inspectors
- Amount of floor space
- # of C&E sections needed

Reduce Rework Costs

- Optimize the process
- Reduce scrap
- Improve/streamline heavy repair process
- Reduce labor

Improve confidence in the quality process

- Improve containment
- Reduce recall risk

Containment

Resources needed

- Small Quality Spill
 - Containment In-House
 - Redirect labor to inspect product at your facility
 - Multiple shifts
 - # of heads needed
 - Cost per head
 - Labor sent to customer to repair on-site
 - Cost of travel
 - Cost per head
 - Customer fines for a missed shipment
 - Poor mark against your product quality

Multiple Quality spills

- May cost future work with that customer
- Too many bad marks customer may require 3rd Party Inspection
 - Cost of direct labor reassigned to inspect outgoing product
 - High cost of contracting outside inspection
 - As high as \$100,000 per week

Reducing Head Count

- \$70,000-\$100,000 Per year for each operator
- Better detection of weld defects with automated system
 - Faster and more reliable than manual
 - Less time needed to inspect parts
 - Inspection/repair workers only need to focus on "bad" welds

Reduction of Floor Space

Cost of Floor Space

- Operating cost = \$5,000,000/year
- Factory Floor Space = 100,000 sq ft
 - 5,000,000/100,000 = \$50 per sq ft per year

When detection of defects is more reliable...

- Workers only need to focus on weld defects found by the 3D weld inspection system
- Less space needed for inspection
- Less space needed for repair

Reduction of Off-Line Tooling

- Cost of off-line tooling
 - \$20,000-\$30,000 per fixture, depending on complexity
- More repair can be done on-line
 - B/C faster detection of defects
 - Less time needed to inspect
- Reduces need for off-line tooling needed for inspection and repair

Quality Spill Scenario

What does it cost? Small Quality Spill

- 2 Additional workers needed to inspect and repair off line
 - \$7,084 per head per month
 - $2 \times 7,084 = $14,167$ per month
 - Running a 2 shift operation = \$28,334 per month
- 500 Additional sq ft needed for inspection and repair off line
 - \$50 per sq ft per year
 - $500 \times $50 = $25,000 \text{ per year}$
 - \$2,084 per month
- 1 Additional inspection/repair fixtures needed
 - \$25,000 per fixture
- Monthly Cost = \$30,418 per month in labor (2 shifts) and floor space
- Capital Cost = \$25,000 in fixturing
- 3 months of additional inspection and repair
 - 2 Shift Labor and Floor Space = \$91,254
 - Total cost for 3 months = \$116,254

Quality Spill Scenario

What does it cost? Large Quality Spill

- 4 Additional workers needed to inspect and repair off line
 - \$7,084 per head, per month
 - $4 \times \$7,084 \times 2$ Shifts = \$56,672 per month
- 1000 Additional sq ft needed for inspection and repair off line
 - \$50 per sq ft per year
 - $1000 \times $50 = $50,000$ per year
 - \$4167 per month
- 2 Additional inspection/repair fixtures needed
 - \$25,000 per fixture
 - 2 x \$25,000 = \$50,000 one time capitol cost
- Monthly Cost = \$60,839 per month in labor and floor space
- Capital Cost = \$50,000 in fixturing
- Total Cost for 3 Months = \$232,517
 - This does **NOT** include 3rd party inspection costs

Reduction of Cut and Etch Sections

- Cut and Etch operations are necessary
 - Expensive
 - Per Cut ≈ \$8.00
 - Time consuming
 - 20 45 min per cut
 - C&E is a random snapshot in time
 - Not 100% inspection

www.binzel-abicor.com

Reduction of Cut and Etch Sections

- Combining Weld Parameter Monitoring with 3D Weld Inspection
 - Monitor the welding arc for parameters that fall out of set windows (Realtime)
 - Amps
 - Volts
 - WFS
 - Inspect weld with for defects with Sensor
 - On-seam
 - Porosity
 - Length
 - Weld Profile

www.binzel-abicor.com

Along Edges

Reduction of Cut and Etch Sections

- Knowing the weld is running at the right parameters...
- Knowing the weld is free of surface defects and meets size and profile requirements...
- Having the data to prove it and connect it to each individual assembly for traceability...
- When properly correlated the combination can...
 - Reduce the need for daily cut and etch to weekly or monthly
 - Reduce the need for large Batch-and-Hold lots
 - Greatly save on scrap costs

Optimization/Reduction

- Operators only need to focus on "bad" welds
 - Less time need in-line to inspect parts
 - Cycle-time decrease
 - Reduces over-welding
 - One inch of repair weld $\approx 0.25
 - 1 min of labor $\approx 0.50
 - Reduces unneeded repair
 - Cost of a bad repair
 - Cost of wasted time on repairing a "good" weld
 - Min of an extra \$0.75 per assembly for 1 inch of unnecessary weld repair

Scrap Reduction

- Cost of Scrapped Stamping
 - Close-Out welds
 - Optimized Detection of a weld defect before close-out
 - Reduced labor to cut off, fix and reweld post process
- Cost of Scrapped Assembly
 - Major Defects (not repairable)
 - Burn through
 - Misassembled components
 - In-Line detection can find these before the assembly is finished
 - Don't need to scrap whole assembly
 - Kicked out of line

Process Optimization

- Manual Inspection Reduction
 - Keep Parts moving in the line
 - Only send parts to Inspection/Repair stations when a defect is found
 - Less labor needed on-line

Truck Frame Lines – Heavy Repair

- Heavy Repair
 - Reduced inspection time = more on-line repair time
 - Less need to send assemblies to Heavy Repair
 - Only send large repairs to Heavy repair
 - Less stacking and unstacking frames
 - Reduced logistics in plant post process
 - Reduced labor needed for Hi-LO drivers for Heavy Repair and EOL
 - Less labor needed for Post Process Repair
 - More frames can go off EOL straight to E-Coat/Finishing

Reduced Risk

Warranty/Future Work/Recall

- Manual inspection is only 80% accurate at best
 - Worker Fatigue
 - Multiple checks needed on same weld to ensure quality
- Automated inspection can be up to 99% accurate
 - No need for Multiple checks
 - Accurate defect reporting
 - Data record of defect and repair
 - Defend against warranty claims
- Cost of shutting down the customer
 - Up to \$10,000 per min
- Cost of warranty claim
 - Quality status revoked by customer
 - Future work from customer jeopardized
 - Poor reputation may spread to other customers
- Cost of recall
 - Millions of dollars in fines and repairs
 - Buy Back of affected vehicles
 - Industry "Black Eye"

Quality System Improvement

How Automated 3D inspection can help

- Customers are requiring more stringent inspection and data recording
 - Industry 4.0
 - Centralized Tracking of defects and repair on specific parts
 - Data records
 - Repairs completed
 - Outgoing weld quality
 - CQI 15
 - Ford
 - FCA
 - GM
 - Can Help reduce RPN #'s for FMEA's
 - Accurate Detection
 - Accurate recording of data

Special Processes:

Welding System Assessment

Quality System Improvement

How Automated 3D inspection can help

Conclusion

Automated 3D Weld Inspection

- Quality spills and the labor to support is very expensive
 - Containment
 - 3rd Party inspection
- Automated weld inspection can help reduce Cut and Etch expenses
 - Reduced sections
 - Reduced frequency
- Automated weld inspection can optimize your rework system
 - Manual inspection reduced
 - Pinpoint weld defects for repair
- Automated weld inspection can reduce risk
 - Weld Quality Insurance
 - Data collection gives traceability to every assembly
 - Also makes you compliant to CQI 15
 - Warranty Claims/Recalls

Weld Inspection

Contact Us!

Jason Jamiel

Key Accounts - Arc / Sensors

(937) 418-6357

jjamiel@abicorusa.com

Jeff Henderson

Key Accounts - Arc / Sensors

(847)-354-0380

ihenderson@abicorusa.com

Bernd Lorosch

Business Unit Manager - SmartRay
+49 (0) 8171-96834 X 170

bernd.loroesch@smartray.com

Patrick Schuckall

Applications Engineer - SmartRay
+49 (0) 8171-96834 X 228

patrick.schuckall@smartray.com

